If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-6t-130=0
a = 16; b = -6; c = -130;
Δ = b2-4ac
Δ = -62-4·16·(-130)
Δ = 8356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8356}=\sqrt{4*2089}=\sqrt{4}*\sqrt{2089}=2\sqrt{2089}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{2089}}{2*16}=\frac{6-2\sqrt{2089}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{2089}}{2*16}=\frac{6+2\sqrt{2089}}{32} $
| 1x+7x=6 | | 3(x-3)-2(x-5)=6+(x-2) | | 16t^2-17t+5=0 | | a/(-5)=55 | | 11m-13-5m=8m+3= | | 5/6y=-2/3 | | x=4x^2+25-21 | | 3(x+4)-4=2(x+4)+x+5 | | x^2-6x-92=0 | | 60-3x=45 | | 36=k/54 | | -4s+36s=-81 | | √3x-1/5=2 | | 31=5(2c+7) | | 60-3x=57 | | -9(7y+3)=24-5y | | 3+5x=9-x | | 6m+9=57m= | | 2+5(1-6r)=-15 | | -15-7x=12-(2x-8) | | 4x-36=9x-9 | | 10x+5-2x+7=48 | | 16=4(x=8) | | 3x-1/5=2 | | k+2(k-3)=2(4k+3)k | | 3(2x-7)=1-(2-x) | | 24-3x=6x+3 | | 24=3x=6x+3 | | –6(12+2)=8–5–80x–7 | | 1 = d2− 1 | | X=-4=2x-8 | | 7y-5y=-6 |